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Abstract. For the first order transition of the Ising model below Tc, Isakov has proven that the free
energy possesses an essential singularity in the applied field. Such a singularity in the control parameter,
anticipated by condensation theory, is believed to be a generic feature of first order transitions, but too
weak to be observable. We study these issues for the temperature driven transition of the q states 2D
Potts model at q > qc = 4. Adapting the droplet model to this case, we relate its parameters to the
critical properties at qc and confront the free energy to the many informations brought by previous works.
The essential singularity predicted at the transition temperature leads to observable effects in numerical
data. On a finite lattice, a metastability domain of temperatures is identified, which shrinks to zero in the
thermodynamical limit.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Jk Critical point phenomena –
64.60.My Metastable phases

1 Introduction

The transition between the vapour and liquid phases of
a material has been for a long time the prototype for
first order transitions. Below a critical temperature Tc,
the density, that is the derivative of the pressure P with
respect to the chemical potential µ, is discontinuous at
µ = µt, where the two phases coexist. The vapour phase
is stable below µt, the liquid phase above. As T → Tc, the
transition becomes continuous, the density fluctuations di-
verge, leading to the well-known phenomenon of critical
opalescence. Van der Waals theory of condensation pre-
dicts these equilibrium properties, and in addition lead to
the existence of metastable states, vapour above µt and
liquid below, experimentally accessible during finite times.
In this theory, they correspond to the possibility of ana-
lytically continuing the low and high density branches of
the isotherm function P(µ) |T beyond µt.

All of this can be found in standard textbooks, to-
gether with other methods leading to similar descriptions,
as well as applications of the same ideas to many systems
of physical and/or theoretical interest, which undergo first
order transitions. One of the simplest and most exten-
sively studied system is the Ising model. There instead of
the pressure, one considers F(h) |T , the free energy as a
function of the applied magnetic field h at fixed T . Be-
low Tc, the field driven first order transition is located at
ht = 0, and manifested by a discontinuity of the magne-
tization. As T → Tc, the magnetization vanishes, and its
fluctuations measured by the susceptibility, diverge with
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a critical exponent which is known in 2D. In this partic-
ular case however, it has been mathematically proven by
Isakov [1] that Van der Waals theory cannot be true: each
of the ordered phase free energies possesses an essential
singularity at h = ht, which makes its analytical continu-
ation ambiguous in the metastability domains where the
magnetization remains opposite to the applied field.

In fact, such a singularity in the control parameter at
the transition was anticipated a long time ago from the
droplet theory of condensation in the version developped
by Fisher [2], who attributes to Mayer [3] the first sug-
gestion in this direction. Shortly after, Langer [4] applied
the droplet model to the Ising case, emphasizing that the
expected singularity was so weak that it could not be ex-
perimentally detected. The reader will find in [2,4] many
references to earlier and related work, and inspiring discus-
sions on the physics behind. Since then, the case has been
reexamined many times, with particular concerns about
the definition and properties of the so-called droplets, or
clusters. Steps in this line of research can be followed in,
e.g., [5–7]. Its intimate connection with metastability and
dynamics at first order transitions has been for a long time
a matter of investigations and debate [8,9], and still is an
active field [10–15].

The basic idea of the approach is that the fluctuations
of the system in a stable phase are due to the appear-
ance of droplets of one or several other phases, whose size
and number are controlled by the value of the driving
parameter. The statistics of these droplets is described
as a Mayer’s cluster expansion of the thermodynamical
function at hand, and the analyticity of the latter follows
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from the convergence properties of this expansion. A tran-
sition occurs at a point of parameter space where the en-
ergy/entropy balance favours large clusters of the wrong
phase, and the cluster expansion is shown to diverge at
such a point, which thus is singular.

In this paper, we investigate similar issues within the
bidimensional, q-states, Potts model [16] for which we
adapt the droplet picture, much in the spirit of [2], us-
ing the fact that the transition, here driven by tempera-
ture and being first order for q > 4, becomes continuous
as q → qc = 4 where the latent heat and the interfacial
tension vanish. The Potts model is interesting per se, as
illustrated by the many studies which have been and still
are devoted to it, and it seems thus worthwhile to learn
more about it. As we shall see, the droplet point of view
allows one to put together in a very compact way many of
the results accumulated over years, either analytically or
by high precision simulations [17,18] at the transition. It is
the case for the relationship between properties of the free
energy along the first order transition line q > 4 and at its
critical end point qc, a relationship which was evidenced
in a series of papers by Bhattacharya et al. [19–21]. This
connection was recently studied in a completely different
framework by Cardy [22] who relates the emergence of a
critical qc to branching properties of the Potts interfaces
between different ordered phases. A better knowledge of
the analytic structure of the free energy close to a first
order point may also help in other domains of current in-
terest, such as the dynamics, as already mentioned, and
the role of disorder for the phase diagram of statistical
systems.

Duality relates the disordered phase, stable at high
temperature, to the q ordered phases, stable at low tem-
perature. We will mainly focus on the disordered phase.
The paper is organized as follows. In Section 2, we adapt
the droplet formulation to the Potts case, and constrain
its parameters by requiring consistency, for q values above
4, with the known critical properties at qc. In Section 3,
we first show that, in a pure phase, the order n energy cu-
mulants fn of the model compare successfully with those
measured in [17] for n ≤ 8 and q = 10, 15, 20. Only one,
q-independent, parameter is needed to reproduce all ra-
tios fn/f2 given f2 at each q. This scaling property allows
one to construct a universal (i.e. q-independent) function
φ(z), which represents the pure phase free energy suit-
ably rescaled, z measuring the distance to the transition
point in units of the inverse temperature β, also rescaled.
The function φ has a simple integral representation from
which we derive its analytic properties. It has an essential
branch point singularity at z = 0. We then turn to appli-
cations. The associated internal energy distribution for a
finite square lattice is studied in Section 4. In particular,
rescaling the internal energy and the lattice size leads to
a universal distribution from which any q-dependence has
disappeared. We emphasize consequences for the distribu-
tion of the singular structure of the free energy at the tran-
sition. Specific finite size effects are predicted, although by
assumption the thermodynamical limit of the free energy
density has been taken, and compared with those actually

observed in a numerical simulation performed at q = 9. In
Section 5, we define the disordered distribution below the
transition temperature by reweighting that defined above.
From its finite size properties, we determine a size depen-
dent spinodal value β∗ such that the system is metastable
in the interval β∗ > β > βt. Inside this interval, which
shrinks to zero in the thermodynamical limit, we define a
free energy for metastable states. A summary and conclu-
sions are proposed in a last section.

2 The Potts model and its droplet description

We first recall a few basic definitions and properties rele-
vant for our discussion of thermodynamical quantities as-
sociated with the ferromagnetic q-states Potts model. We
next summarize the standard droplet description of con-
densation, and finally adapt it so as to incorporate the
known properties of the model at q ≥ 4.

2.1 The Potts model

The model is defined [16] through the Hamiltonian

H = −J
∑
〈ij〉

δσiσj , (1)

where 〈ij〉 denotes the pairs of nearest neighbours on a
square lattice of area A = L2 and σi one of the q possible
values of the spin variable at site i. In the rest of the paper,
the energy per link J is set equal to 1.

The partition function of the system is

ZA(β) =
∑
{σ}

exp(−βH(σ)), (2)

=
∑
E

ΩA(E) exp (−βAE) (3)

where β is the inverse temperature, E ∈ [−2, 0] the en-
ergy density per site, and ΩA the corresponding number
of states. It is equivalent to say that the energy probability
density is

Pβ,A(E) =
1

ZA(β)
ΩA(E) exp(−βAE). (4)

For convenience, we shall call “free energy” the quantity

FA =
1
A

log(ZA), (5)

while strictly speaking FA is −1/β times the standard free
energy density. Its thermodynamical limit F is its limit
as A→∞. The finite size microcanonical entropy density
SA(E) and its thermodynamical limit S(E) are defined by

SA(E) ≡ 1
A

log(ΩA), (6)

= FA(β) +
1
A

log(Pβ,A(E)) + β E, (7)

S(E) = lim SA(E), A→∞. (8)
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A numerical simulation provides the energy distribution
ΩAe−βAE up to a numerical factor, and thus the entropy
SA up to an additive constant.

A review of many of the known properties of the Potts
model can be found in [23]. A transition occurs at an in-
verse temperature βt given by [24]

βt = log(
√
q + 1). (9)

It is first order for q > 4, and second order at and below
the end point qc = 4, where it is characterized, e.g., by
the critical indices α and ν for the specific heat and the
correlation length respectively. For future reference, we
recall that

α = 2/3,
ν = 2/3. (10)

In the thermodynamical limit, the system is either in the
disordered phase, for β < βt, or in one of the q degenerate
ordered phases for β > βt. When necessary, a quantity
referring to an ordered or to the disordered phase will re-
ceive a superscript o or d respectively. So F (o) (resp. F (d))
denotes the ordered (resp. disordered) free energy, a well
defined function of β for β > βt (resp. < βt). The transi-
tion point is the β value where the two free energies are
equal: F (o)(βt) = F (d)(βt). For q > 4 where the transition
is first order, one expects on very general grounds that at
βt, F (o) (resp. F (d)) has finite left (resp. right) derivatives
to any order n with respect to β. They give (−1)n times
the cumulants fo,dn of the internal energy associated with
each of the pure phases o or d. We shall be interested in
the analytic continuation of the free energies in the com-
plex β plane at q > 4 fixed, which will consist in giving a
meaning to the formal expansion:

F (o,d)(β) =
∞∑
n=0

(−1)nfo,dn (β − βt)n/n! (11)

The two functions F are related to each other by dual-
ity [23]. If

(exp(β̃)− 1) (exp(β) − 1) = q, (12)

then

F (d)(β̃) = F (o)(β)− 2 log((exp(β)− 1)/
√
q). (13)

We choose to study F (d) for concretness, and consider the
d→ o transition as a condensation process where droplets
of aligned spins inside a disordered bulk tend to grow as
β approaches βt from below. The droplet model consists
in describing the system at equilibrium as a statistical
distribution of non interacting droplets.

2.2 The droplet picture

We closely follow Fisher [2]. The transposition from
vapour condensation to the d → o Potts transition at

q > qc produces the disordered phase free energy F (d)(β)
as a function of the inverse temperature. A droplet of size
` (its area) is a connected domain of ` sites with the same
spin value. The model assumes that it has an effective
perimeter scaling as `σ, where the exponent σ, smaller
than 1 (no fully ramified clusters), but possibly larger than
the geometrical value 1/2 [25], accounts for the appear-
ance at fixed ` of many different shapes and topologies.
This is controversial and calls for comments to be made
later. The free energy can then be written:

F (d)(β) = c
∞∑
`=1

`−τx`
σ

y` (14)

y = exp(β − βt) (15)
x = exp(−ω) (16)

with

ω > 0, 1/2 < σ < 1, τ > 0. (17)

The parameter c fixes the normalisation and `τ is a cor-
rection to the area and perimeter dependences [4,26].
A priori, the parameters ω, σ, τ and c are functions of
q, a question which we examine in the next subsection.
Equations (14–16) are interpreted as follows. The free en-
ergy is the sum over ` of contributions coming from all
clusters of size `. The quantity y plays the role of the
activity in gas condensation or of exp (−h) in the Ising
problem, and ω denote an energy density per unit of ef-
fective perimeter (effective interface tension between the
interior and the exterior of a droplet).

Each term in the above sum is proportional to the
probability of an ordered cluster of size ` in the system.
Due to inequalities (17), the factor y` implies that for
β < βt the probability of arbitrary large clusters is ex-
ponentially small. The disordered phase is stable there,
the series and all its derivatives with respect to β, con-
verge. The converse is true for β > βt. It follows that the
disordered free energy F (d) is analytic in the half-plane
Re(β) < βt and has an essential singularity at βt.

As a side remark, we note that in its Kasteleyn-Fortuin
formulation [27], the Potts model is a model of satis-
fied or unsatisfied links. The temperature dependence
of the partition function is carried by weights ȳl, with
ȳ = (exp(β)−1)/

√
q, ` being the number of satisfied links

forming a connected cluster. The droplet picture applied
to the link representation leads to equations similar to
(14, 15) with y replaced by ȳ. Close to the transition,
y ' ȳ ' 1 up to order (β− βt) terms, so that using y or ȳ
makes no difference for the leading singularity: it has the
same structure in b = log ȳ and in β − βt.

Following Fisher [2], we now consider the system close
to the critical point qc, and fix the parameters ω, σ and τ .

2.3 Fixing the parameters from the critical point

We go on with the disordered phase free energy, and from
now on omit the d superscript. The energy cumulant of
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order n is given by

fn = (−1)n
dn

dβn
F |y=1 (18)

with F given by equation (14). At least for large
enough orders, the series obtained for fn can be given
a closed form, by replacing the discrete sum over ` by an
integral [2,4]. The result is

fn = c(−1)n
∫ ∞

0

d` exp (−ω`σ)`n−τ (19)

=
c(−1)n

σω(n−τ+1)/σ
Γ ((n− τ + 1)/σ). (20)

Hence all the derivatives of F exist at the transition, but
due to σ < 1 the convergence radius of its Taylor se-
ries (11) in (β − βt) is zero, a characteristic situation for
an essential singularity at βt. It also follows from (20) that
the scale in β−βt relevant for the behaviour of F close to
the transition is

β0 = ω1/σ. (21)

On another hand, from an expansion to order 10 in 1/
√
q

of the free energy, it was empirically found in [19–21], and
confirmed by expansions recently pushed to order 23 [28],
that at least in a “low” q domain, in fact extending up to
q ≈ 30 or more, one has approximately

f2 ∝ ξ, (22)

f3/f2 ∝ ξ3/2, (23)

where ξ, the correlation length of the Potts model, is ex-
actly known [29,30] and grows extremely rapidly as q de-
creases towards qc. In [19,20], a tentative explanation for
such behaviours was that at qc, ξ and the most singular
part Fsing. of F are respectively proportional to |β−βt|−ν
and |β−βt|2−α, so that equations (22, 23) hold there, due
to (10), and thus perhaps in some neighborhood of the
critical point. Together with (20, 21), this invites us to
postulate

ω = f/f2 ∝ 1/ξ, (24)
σ = 2/3, (25)
τ = 7/3, (26)

with f approximately constant with respect to q.
Note that if ω in (14, 16) is interpreted as an effective

interfacial tension between the interior and the exterior of
a droplet, its postulated behaviour (24) fits nicely that of
the true o − d interface tension Σ, known to be equal to
1/2ξ [30], and also determined numerically via a study of
phase coexistence at βt [18]. We remark that at q = qc the
same behaviour Σ ξ → const. as β → βc follows from the
scaling relation µ = ν, µ being the Widom exponent for
the interface tension [31]. Why it also holds for ω ξ remains
however unclear since whereas Σ is an energy density per
unit length along a straight boundary, ω is here related to
an effective boundary whose size scales as a length to the
power 2σ = 4/3 (25).

As discussed in details by Binder [5] for the Ising case,
taking σ 6= 1/2 is quite questionable, and in fact incor-
rect if one insists that the droplets of the model are the
standard geometric clusters which can be drawn on a lat-
tice. This is confirmed by the exact results of [6,7] about
the probability of such clusters, and of Isakov [1] on the
cumulants of the Ising model at sufficiently low tempera-
ture. Because their derivation is essentially of geometrical
nature, we see no reason why they should not apply to the
Potts case. A physical interpretation of σ > 1/2 has been
proposed by Binder. For the time being, we take σ = 2/3
as an effective parameter describing some neighborhood of
the critical end point, and show that anyway it accounts
for many observed facts. This point will be discussed again
in our conclusions (Sect. 6).

3 The cumulants confronted to numerical
data. The free energy

The arguments borrowed from [19,20] to guess f3/f2

equation (23) were furthermore applied in these refer-
ences to cumulants of any order by successive derivations
of Fsing. ∝ (βt − β)2−α and the subsequent replacement
of (βt − β) by a constant times ξ−1/ν . As a result, the
series (11) converged, providing an ansatz for F (d) [21]
analytic up to a value β∗ > βt, which could be inter-
preted as the end of a metastability region (spinode), in
clear contradiction with any droplet approach.

3.1 The Potts model cumulants

Let us compare the model predictions for the energy cu-
mulants with the results of the high accuracy simulation
of Janke and Kappler [17], who give the pure phase fn up
to order 8 at βt. We are concerned with n ≥ 2 only, i.e.
with those cumulants which diverge at the critical point.
Anyway, f0 and f1 are exactly known [24], and irrele-
vant for the study of a single phase. Since the normali-
sation constant c remains undetermined and since f2 is
supposed to carry most of the q-dependence of ω (24), we
rewrite (20) as

fn
f2

= (−1)n
(
f2

f

)(n−2)/σ
Γ ((n− τ + 1)/σ)
Γ ((3− τ)/σ)

, n ≥ 2,

(27)

that is, if the conjectures (25, 26) are used

fn
f2

= (−1)n Sn Γ (3n/2− 2), (28)

Sn =
(
f2

f

)(3n/2−3)

. (29)

This is the basic equation of our paper. It determines all
the fn’s, n > 2 as a function of f2 at the price of one free
parameter f only. We fitted equation (28) to the data [17],
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Fig. 1. Comparison of the prediction of equation (28) (contin-
uous line) with the numerical data of reference [17], versus the
order n. The large squared symbols at n = 9 and 10 indicate
orders of magnitude only. The scale factor Sn, which contains
the only free parameter f , exhausts the full q-dependence of
the fn’s.

fixing f2 at the central value measured for each q = 10,
15 and 20, n varying from 3 to 8. We obtained a χ2/d.o.f.
equal to 1.3 for 17 degrees of freedom with

f = 0.295± 0.003. (30)

The excellent agreement is illustrated in Figure 1 where
the numerical data [17] for (−1)nfn/(f2 Sn), n ≤ 8 are
compared to Γ (3n/2 − 2) (continuous line) and plotted
against the order n. Also indicated are the orders of mag-
nitude estimated for n = 9 and 10. In order to appreciate
whether the values (25, 26) of σ and τ are actually re-
quested by the numerical data, we have repeated the fit
letting also these parameters free. The new fit requires

σ = 0.67± 0.01, (31)
τ = 2.34± 0.10, (32)
f = 0.28± 0.02, (33)

with χ2/d.o.f. = 1 for 15 d.o.f. in perfect agreement with
our conjecture.

This nicely confirms the existence of a large domain
of “low” q values where the fluctuations of the system
are strongly influenced by the critical properties at qc.
The Fisher droplet model, supplemented by our conjecture
that the whole q-dependence is embedded in f2, gives them
an economical and accurate description. We note that the
ansatz [21] predicts much smaller values for the highest or-
der cumulants, missing f8 by a factor about thirty. These
results not only support the existence of an essential sin-
gularity in the free energy, but also show that this singu-
larity does lead to detectable effects. We now proceed to
construct the free energy explicitly.

3.2 The disordered phase free energy

The free energy can be reconstructed either directly from
the droplet formulation (14), replacing the sum by an inte-
gral as done in [4], or from the asymptotic series (11) with
fn given by (27) or (28) and the Γ -function replaced by
its integral representation (Borel resummation). In view
of the results of the previous subsection, it is natural to
introduce the following rescaled free energy φ, expressed
as a function of a rescaled temperature z,

φ(z) ≡
(
f2

f

)2/σ 1
f2

(
F (β)− F (βt)− f1(β − βt)

)
, (34)

z ≡ −(β − βt)(f2/f)1/σ. (35)

With this choice of normalizations, we have φ(0) =
φ′(0) = 0 and φ′′(0) = 1. For generic values of σ and
τ , φ reads

φ(z) =
1

Γ ((3− τ)/σ)

∫ ∞
0

dt
t(σ+τ−1)/σ

× e−t
(

e−zt
1/σ − 1 + zt1/σ

)
, (36)

and specializing to the values (25, 26) of σ and τ , we
finally get

φ(z) =
∫ ∞

0

dt
t3

e−t
(

e−zt
3/2 − 1 + zt3/2

)
. (37)

This function is obviously holomorphic for Re z > 0, which
includes the stability region β < βt of the disordered
phase. It can be analytically continued in the complex z-
plane by deforming the integration contour in t. The only
singularity is a branch point at z = 0, easy to character-
ize. The contribution to φ from any finite t interval [0, t0]
is an entire function, as well as that from t0 to ∞ of the
linear part (in z) of the integrand. Hence the singular part
of φ is that of

φ(z) =
∫ ∞
t0

dt
t3

e−t−zt
3/2
, (38)

for any positive t0. Next, as z is continued to z =
|z| exp(±iπ), one may continuously move the contour
[t0,+∞] to [t0,∓i∞] leading to a discontinuity along the
negative real axis

∆ ≡ φ(−|z|+ iε)− φ(−|z| − iε), (39)

= −
∫ t0+i∞

t0−i∞

dt
t3

e−t−zt
3/2
. (40)

In the following, we define φ(z) by (37) in the whole com-
plex plane cut along the negative real axis, on which φ
acquires an imaginary part. For |z| small, the above inte-
gral can be estimated by steepest descent, giving

Imφ(−|z|+ iε) = −
√
π
(3|z|

2

)5

exp
(
− 4

27z2

)
I(z),

(41)
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where the function I(z), easy to evaluate numerically, goes
smoothly to one as z goes to 0 along the negative real
axis. All this is quite similar to the analysis performed
by Langer [4] for the Ising case, where the magnetic field
plays the role of z. Whenever a precise evaluation of φ(z) is
needed, one can either numerically integrate the analytic
continuation of (37) using suitable contours, or use its
large |z| expansion, which is found to be:

φ(z) = γ/6− 3/4− log(z)/3− 2z
√
π + S (42)

S =
2
3
z4/3

∞∑
q≥0, 6=2

(−1)q

q!
z−2q/3Γ (

2q − 4
3

), (43)

where γ is the Euler’s constant. The derivation of
this expansion can be obtained by a Sommerfeld-
Watson method. One starts from the formal series ex-
pansion of φ in zn, truncated at some large n value
N . The sum

∑N
0 (−1)nan is replaced by the integral

1/(2i)
∮

dν aν/ sin(π ν) over a contour encircling all inte-
gers from 0 to N . After sending N to ∞ the contour is
deformed so as to encircle the poles of the integrand situ-
ated on the negative real axis, and the residue formula is
finally applied. A similar expansion for the second deriva-
tive of φ with respect to z is much easier to derive starting
from

φ′′(z) =
∫ ∞

0

dt e−t−zt
3/2
, (44)

≡ z−2/3

∫ ∞
0

dt exp(−t/z2/3 − t3/2), (45)

and expanding the latter integral in powers of z−2/3 which
yields a convergent series in this variable [32].

As we have seen, the closed form (37) of the thermody-
namical free energy incorporates the information acquired
upon the ∼ 10 first energy cumulants in simulations per-
formed on large but finite lattices during finite (Monte
Carlo) times. That it makes sense is justified by exact
results [34], which, in short, state that on a finite lattice,
1/A log(Z(d)

A ) gives the thermodynamical limit F (d) up to
corrections which are exponentially small in the linear size
of the lattice. In contrast, the next section will illustrate
that the energy distribution PA(E) on a finite lattice ex-
hibits strong finite size effects, specific to the singularity
structure of the thermodynamical free energy, and corrob-
orated by a numerical simulation at q = 9. The procedure
followed to study PA is similar to that used in [21].

4 Finite size effects and scaling properties
in the internal energy distribution

4.1 The probability density for the energy

Given the rescaled free energy φ(z), the probability den-
sity for observing a lattice averaged energy density E in a
supposedly disordered bulk phase at β = βt, on a lattice

of area A, is obtained by inverse Laplace transform using
equations (3–5). We find

Pβt,A(ε) =
Ar
2iπ

∫ z̄+i∞

z̄−i∞
dz exp (Ar (φ(z)− ε z)), (46)

where the rescaled energy, area and inverse temperature
ε, Ar and z respectively are defined as

ε =
1
f

(
f2

f

)1/2

(E −E(d)), (47)

Ar = f

(
f

f2

)2

A, (48)

z = −
(
f2

f

)3/2

(β − βt). (49)

The symbol E(d) (or E(o)) represents the exactly known
internal energy of the disordered (or ordered) phase in the
thermodynamical limit [23]. In the rest of this paper, and
depending on the context, we will use either the physical
E, A and β variables, or their rescaled forms ε, Ar and
z. For economy of notations however, we will often keep
the same name for functions of them. The variable E (or
ε) is considered as continuous, β (or z) as unlimited in
the imaginary direction. Equation (47) maps the physical
region E ∈ [−2, 0] over a large interval in ε, the more so f2

is large (see Eq. (47)), that is q close to 4. Since on large
lattices P is very sharply peaked around ε = 0, it will be
justified (and convenient) to consider also ε as unlimited,
unless specified. Due to the analyticity properties of φ(z),
the integral (46) does not depend on z̄ ≥ 0.

With the above prescriptions, one can verify that
Pβt,A(ε) is a probability density, normalized to one with
respect to integration over ε, that 〈ε〉 = 0, 〈ε2〉 =
1, and more generally that the cumulants of ε for
the density Pβt,A have exactly the values assigned by
equations (28, 34, 35), a very powerful check for numeri-
cal integration of (46). Any explicit q-dependence has dis-
appeared, and the effective area Ar is the only external
parameter. Its relation (48) to the physical area A pre-
dicts the scaling property that different q-values lead to
the same Pβt,A(ε) if they are measured on lattices of lin-
ear size proportional to f2 (i.e. approximately to ξ ac-
cording to (22), which sounds reasonable). We note that
the largest L values used in [17] for q = [10, 15, 20] were
precisely chosen roughly proportional to ξ.

This scaling behaviour is independent of the particular
form of φ(z), and we turn to the study of those properties
of the distribution which are specific to our construction.
The results of this section are all summarized through
their application to the case q = 9 with L = 80, 120
and 200, shown in Figure 2. The rescaling of A = L2 to
Ar (48) requires the knowledge of f2 at q = 9. There the
correlation length is 14.9 [30], and we evaluate f2 from its
value at q = 10 [17] by (22), finding f2(q = 9) = 12.8. The
quantity shown in Figure 2 is

qβt,A(ε) =
1
Ar

log
(
Pβt,A(ε)√

Ar

)
. (50)
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Fig. 2. The energy distribution of the disordered phase at
q = 9 as a function of ε for L = 80, 120, 200. The continu-
ous curves result from numerical integration of (46) and the
symbols represent analytical approximations (see text). As L
increases, the strong broadening for ε < 0 is a manifestation
of the free energy singularity at βt.

The continuous lines correspond to the numerical inte-
gration of (46), and the other ones to various analytical
approximations described below.

4.2 The distribution above the disordered peak, ε > 0

For ε ≥ 0, the saddle point equation for the integral (46),
namely

dφ
d z

= ε, (51)

has a unique, non negative solution zs(ε). Taking z̄ = zs in
the definition (46) makes the numerical integration easy.
The saddle point estimate of Pβt,A, valid at large Ar, is

P
(s)
βt, A

=

√
Ar φ

′′(z)
2 π

exp
(
Ar

[
φ(z)− z dφ

d z

])
,

z = zs(ε), ε > 0. (52)

In this approximation, the thermodynamical limit of
qβt,A (50) exists for any non negative ε, and defines, up to a
linear term in ε, a non trivial, concave, microcanonical en-
tropy density S(E). Moreover, for ε large, an estimate zas

of zs can be obtained, by solving equation (51) analytically
when the two leading terms only of the large |z| expan-
sion (42) are kept. Then φ(zas) and φ

′′
(zas) are computed

at the same order, and plugged into (52), avoiding any
integration. The corresponding algebraic expressions are
quite lengthy, and not given. They are used for Figure 2,
showing that the approximation is very good in practice
shortly after ε = 1. Farther away, these expressions show
that qβt,∞(ε) become proportional to −(ε+ 2

√
π)4. This

means an extremely fast decrease of P (ε) on the right hand
side of the peak, much faster than any Gaussian.

4.3 The distribution below the disordered peak.
Scaling at ε < 0

The side ε < 0 is more unusual, its properties reflecting the
tendancy of the disordered system to order. As ε passes
through 0, the solution of (51) disappears from the first
Rieman sheet, and we need to optimize the integration
contour in (46) differently. Given ε, we move it to a contour
z ≡ x± i y(x, ε) passing through 0 and determined by the
condition

Im (φ− ε z) = 0. (53)

In practice, because Im(φ(x)) is never large before the
integrand in (46) gets exponentially damped at large |x|,
we expand φ(x + i y) in y to second order (note that φ
is analytic and thus expandable at any non zero x), and
solve (53) for y as a function of φ(x) and of its two first
derivatives along the real axis. Along this approximate
path, the integrand does not oscillate too much, allowing
smooth numerical integration, whose result is drawn as
continuous lines in Figure 2.

We extended the curves down to unrealistically small
probabilities, in order to illustrate the peculiarities of the
distribution, both in shape and in size dependence. Com-
pared to the right hand side of the peak, the curve on the
left is much broader and it broadens substantially as L
increases. A similar behaviour of the Ising magnetization
distribution at zero field has been analyzed in [10]. We
now correlate these features to the singular part of φ(z),
via an analytical estimate of Pβt,A(ε) valid at ε < 0.

The integral (46) is also equal to that of minus twice
the imaginary part of the same integrand above the cut:

Pβt,A(ε) = −Ar
π

×
∫ 0

−∞
dx exp (Ar (Reφ(x) − ε x)) sin(Ar Imφ(x)). (54)

For −ε not too small, the integrand is exponentially
damped when |x| increases, the more so Ar is large, while
it vanishes at small |x| due to the behaviour (41) of Imφ.
Thus for Ar large, but fixed, and |x| small enough, Imφ
can be replaced by its approximation (41) and sin(ArImφ)
by its argument. The existence of a saddle point xs follows.
Neglecting Reφ(xs) in front of ε xs, one finds

xs = −
(

8
27Ar |ε|

)1/3

, (55)

1
A2
r

Pβt,A =
2
3

(Ar|ε|)−7/3 exp
(
−(Ar |ε|)2/3

)
, ε < 0.

(56)

Hence we have the remarkable scaling prediction that, up
to a factorA2, the distribution depends on both the energy
and the size through the single variable Ar |ε|. Moreover,
the argument of the exponential damping of the probabil-
ity is not extensive and its ε-dependence is less than linear.
These two properties explain the observed broadening of
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the distribution, and their very derivation emphasizes the
role of a non vanishing imaginary part. Figure 2 shows that
the approximation (56) works quantitatively, the more so
the product |Arε| is large, which actually insures that xs

and thus ArImφ are small. The behaviour (56) will be im-
portant for our discussion of metastability (see Sect. 5).

4.4 A numerical simulation at q = 9

We have just seen that the scaling law (56) sets in for
Ar |ε| sufficiently large. Hence a numerical simulation de-
signed to check it should accumulate reasonable statistics
for events whose probability relative to the peak value is
quite small. This means very extensive simulations, typ-
ically of the size of those of references [17,18]. However,
Figure 2 shows that substantial finite size effects already
appear in qβt,A(ε), equation (50), in a crossover region in
between ε = 0 and the above mentioned scaling domain.
In order to complement the comparison with simulations
made for the cumulants (Sect. 3.1), by a direct study of
finite size effects in energy distributions, we performed a
medium size simulation for q = 9, where the correlation
length is about 1.4 larger than at q = 10, and on lattices
of sizes L = 80, 120, and 200.

We used a Glauber type of algorithm. The site to be
updated is chosen at random and its new spin value de-
termined according to its Boltzmann weight. At β = βt =
log(4) we performed runs consisting for each L of about
106 sets of L2 random hits at the lattice sites. We mea-
sured the internal energy density E every 10 sets, thus
collecting a sample of ' 105 configuration energies for
each L value. Starting from a disordered configuration
(spin chosen at random on each site), the histogram ob-
tained is proportional to the normalized probability den-
sity Pβt,A discussed above. For comparing the numerical
data to the model distribution, Figure 3, we divide each
of them by its value at a reference energy which we choose
to be E0 = −1, and as a function of the internal energy
E we plot the quantity

pβt,A(E) = 103 1
A

log
(
Pβt,A(E)
Pβt,A(E0)

)
. (57)

Here we restored the physical variables using
equations (47, 48) with f2 = 12.8 as explained in
Section 4.3.

At each value of E, the error quoted is estimated from
the fluctuations around the mean observed in subsamples
of 103 to 104 measurements. In this range, the error was
found to depend weakly upon the bin size, in agreement
with an estimated autocorrelation length of order 102 for
the average energy (i.e. in the peak region; it increases
away of it). For the clarity of the figure, we suppressed
the data points for which the statistics is too small to
bring any useful information.

We see in Figure 3 that both the shape in energy and
the dependence in size observed in the simulation are cor-
rectly reproduced by our construction, an absolute pre-
diction since the only parameter f was previously fixed

Fig. 3. Comparison, for pβt,A(E), equation (57), between the
model predictions and numerical data taken at q = 9, L = 80,
120, and 200 (from bottom to top).

from the study in Section 3.1 of the cumulants at q ≥ 10.
There may be a tendancy for the size dependence to be
too strong in the model. We do not consider it as signif-
icant enough to justify a retuning of f or f2, the more
so we did not include in the errors shown that due to the
fluctuations at the reference energy E0. This error induces
an overall uncertainty in the relative vertical positions of
the curves. We cannot exclude either that finite size ef-
fects, in the sense of a residual L dependence in the free
energy, are still present at the lowest L.

We conclude that the adequacy of the model to predict
quantitatively the strong size dependence observed in the
disordered phase energy distribution below the peak, as
well as its (nearly) size independent shape above the peak,
constitutes a good evidence in favour of the analytical
structure of the free energy inherent to the droplet picture.

5 Beyond the transition temperature.
Metastability

Metastability of the disordered phase refers to the possi-
bility for the system to stay disordered above βt. Stan-
dard phenomenology à la Van der Waals, or Landau
mean field theory, would state that the thermodynami-
cal average energy density, which below βt coincides with
〈E〉d (β) = −d/dβ F (d)(β), can be continued up to a so-
called spinodal value βsp, separating a metastable from an
unstable region.

In the droplet picture, as well as in field theoretic ap-
proaches, the point βt is a branch point, and analytic
continuation above βt is ill-defined. An important ques-
tion, not considered in this paper, concerns the associated
dynamics. An extensive review can be found in [8]; see
also [11]. This field is still subject to active research in
the context of Ising-like or liquid/vapour transitions. Af-
ter Langer [4,35] and followers, the nucleation rate of a
metastable state is proportional to the imaginary part of
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Fig. 4. For the disordered phase at q = 9, L = 120, energy
distributions for (β−βt) varying from−2×10−3 to 2×10−3. On
the left of the figure, temperature decreases from the bottom to
the top curves (overcooling), the dotted curve corresponding to
β = βt. The crosses correspond to the inflexion points which all
occur at the same E∗ = −1.104. As the temperature is lowered
below the transition, a minimum of the distribution enters the
graph from the left.

the free energy along the cut. Most of the recent results
concern the Ising case (see for example [36–38]). To our
knowledge, these dynamical aspects have not been stud-
ied for the Potts model above qc. Here we limit ourselves
to a discussion of which thermodynamical properties can
be assigned the metastable states, starting from these fea-
tures of energy distributions which we found in Section 4
as specifically due to the singular structure of the free
energy. For the Ising case, related considerations can be
found in [10].

5.1 Energy distribution away from βt by reweighting

On a finite lattice, the extrapolation of a given energy
distribution from βt to any (larger or smaller) β is unam-
biguously defined by the corresponding reweighting of the
Boltzmann factor. Hence, if Pβt,A (E) is the pure disor-
dered phase distribution, then the (unnormalized) distri-
bution at β is (we write it both in physical and rescaled
variables (47–49))

Dβ,A(E) = exp(−A (E −E(d)) (β − βt))Pβt,A(E). (58)

Dβ,A(ε) = exp(Ar ε z)Pβt,A(ε). (59)

The reweighting (58) is often used to smoothly interpolate,
or slightly extrapolate numerical data taken at some fixed
β point (here at βt). The results of [17] show that it is fea-
sible to perform a high statistics simulation at βt without
tunneling from one phase to another, so that an accurate
numerical determination of the pure phase Pβt,A (E) was
obtained.

We got this distribution for finite lattices from a theo-
retical ansatz for the thermodynamical limit of the free en-
ergy, and now get its continuation beyond βt by (58). The
generic shapes of the reweighted distributions as β is var-
ied are shown in Figure 4 for q = 9 and L = 120. We com-
ment them in the light of the results of Section 4. For ε pos-
itive, Pβt,A decreases faster than a Gaussian (Sect. 4.2),
and the only effect of reweighting there is to displace the
peak position, whatever the sign of z is. For ε and z both
negative (see Sects. 4.3 and 4.4), the exponential growth
of the Boltzmann factor eventually wins over the smoother
behaviour (56) of Pβt,A. Hence, under overcooling the dis-
tribution finally blows up for |z| large enough, leading to
a minimum at E = Em, visible in the upper curve on the
left of Figure 4, which exhibits the cubic like shape typical
of a metastable situation. In between Em and the location
EM of the maximum, all curves have an inflexion point at
the same value E = E∗: It is the inflexion point of the
(finite size) microcanonical entropy SA(E).

The depth of the minimum relative to the peak height
is a measure of the barrier to be crossed by the sys-
tem in order to flip to its stable state, and thus controls
the lifetime of the metastable state. There is no meaning
in considering the distribution (58) below Em, where for
the least the contributions of the ordered states, obtain-
able from ours by duality, and of mixed phase configura-
tions [18] must be included. As a definition, we take the
distribution (58) cut below Em as representative of the
metastable disordered phase.

On a given lattice, the barrier disappears when β be-
comes equal to β∗, the slope at E∗ of

dβ,A (E) ≡ 1
A

Log(Dβ,A (E)). (60)

The size dependent point (β∗, E∗)A, which plays the role
of the classical spinodal point, is thus determined by:

∂2

∂E2
dβ,A (E)|E=E∗ = 0, (61)

∂

∂E
dβ,A (E)|E=E∗ = β∗ − β. (62)

At L = 120 and q = 9, again chosen for illustration, we
find from the model distribution at βt (the dotted curve
of Fig. 4)

E∗ = −1.104 (63)

β∗ = βt + 3.44 10−3 = 1.38973. (64)

Our statistics at βt (Sect. 4.4) are not sufficient to give sig-
nificant results by reweighting, and we explored the above
issue by new simulations in the vicinity of βt. For each β
above βt, where flips from the d to the o phase may become
frequent, we performed ten independent runs, each run be-
ing ten times shorter than at βt. Flips, seen as jumps of the
lattice average energy density ĒL, do occur, but the time
histories show that the configurations with ĒL larger than
∼ −1.24 can be safely labelled as disordered. Although
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Fig. 5. The slope ∂
∂E

dβ,A (E)|E=E∗ as a function of β
from numerical simulations (◦). The straight line represents
equation (62), with β∗ given by the model (64): the slope van-
ishes at the spinodal value β∗ (�).

an accurate determination of E∗ from the data is not pos-
sible, we consistently find that the distribution dβ,A (E)
is essentially a straight line around E = −1.1, and we
measure its slope (62) there. Our numerical results as a
function of β are reported in Figure 5, and compared with
the prediction (62) with β∗ fixed by the model (64). The
agreement is significant: the spinodal point location could
be identified numerically as the value of β where data
points for the left hand side of (62) linearly extrapolate
to 0.

We do not repeat the whole analysis for other lattice
sizes. The important point is that the slope of dβ,A (E)
in the relevant energy region decreases as L increases, as
seen in Figure 3. Our discussion of Section 4.3 interpreted
this size dependent behaviour of the energy distribution
in terms of the singularity structure of the free energy.
In particular, equation (56) indicates that, as A → ∞,
dβ,A (E) as well as its derivative eventually goes to 0, at
least for any E held fixed sufficiently far below the peak.
Via equation (62), this in turn implies that β∗(A) → βt

when A → ∞. Hence we conclude that the metastability
interval β∗ − βt shrinks to zero in the thermodynamical
limit, reproducing the result of the Maxwell construction
applied to Van der Waals theory.

5.2 Free energy for a finite system in a metastable
state

We have defined the disordered energy distribution up to
β∗ as the distribution (58) cut below its minimum at Em.
It is then natural to use it in the standard relations (3–5)
to associate a free energy FA(β) to the metastable disor-

dered phase. So for β ≤ β∗, we set

ZA(β)
ZA(βt)

≡ exp(A (FA(β) − FA(βt))) =
∑
E

′
Dβ,A(E),

(65)

φA(z) ≡
(
f2

f

)3 1
f2

(
FA(β) − F (βt)− f1(β − βt)

)
.

(66)

In the above equations
∑
E

′
means summation above

max [Em, −2]. Note the index A in FA and φA, to be
explained soon. For consistency of course, one must find
that, for z ≥ 0, φA coincides with φ, which by construc-
tion is A independent. This can be checked by plugging in
the representation (46) in the reweighted distribution (58),
and the result in (65, 66), leading to

exp(Ar φA(z)) =
Ar
2 π

∫ ∞
εm

dε
∫ +∞

−∞
dρ

× exp [Ar(φ(z̄ + iρ) − ε (z̄ − z + iρ))] .

(67)

The lower bound εm corresponds to the cut Em, when
necessary. For z ≥ 0, one may choose z̄ = z, εm can be set
to −∞ with an exponentially small error and integration
over ε yields the desired result.

The choice z̄ = z cannot be done for z∗ < z < 0, where
z∗ corresponds to β∗ via (49), due to the branch point at
z = 0. Furthermore, the cut at εm becomes relevant. For
both reasons, φA as defined by (66) actually becomes A-
dependent. We illustrate this definition of the free energy
for metastable states by the continuous line of Figure 6,
drawn for L = 120 and q = 9. Also shown is the result of
the integral (66) with εm replaced by a fixed cut off (here
corresponding to a cut at Ecut = −1.24). For completness,
we also plot the real part of the input φ(z) (37) for z < 0
(dashed line). All definitions provide the same result for
z ≥ 0.

Let us add a few comments. First one observes that
φA and Realφ are quite similar just below z = 0. We
know that Imφ is very small there, or equivalently, that
the droplet expansion (14) can be safely troncated at the
size `c where the term of order ` is minimum [1,4,36]. Near
the end point z∗, one then notice the intriguing fact that
φA is not convex. However, because the restriction on the
sum (65) depends on β (via Em), the energy cumulants
do not coincide with the successive derivatives of FA(β),
they must be computed by actual averages over the dis-
tribution (58). In particular, the quadratic fluctuations of
the energy, of course always positive, are not proportional
to φ

′′

A, which thus may be negative.
Likewise, the fluctuation-dissipation theorem does not

hold and the specific heat, C = −β2 d/dβ 〈E〉 is propor-
tional neither to the quadratic fluctuations of the energy,
nor to the second derivative of φA. Averaging the energy,
we compute 〈E〉 and find it has a minimum near β∗, show-
ing that C (after a maximum) does become negative. Such
a phenomenon disappears in the thermodynamical limit
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Fig. 6. The rescaled free energy for metastable states (z ≤ 0).
Are shown the sum (66) where the cut εm is the z dependent
minimum of the reweighted distribution (continuous curve),
the same sum with a fixed cut (Ecut = −1.24, dots), and the
real part of the input φ(z) (dashed curve). The symbol �marks
the end point of the metastability region. It moves right and
down with increasing L, ending at the origin in the thermo-
dynamical limit. All definitions give the same answer φ(z) for
z ≥ 0.

since, in this limit, β∗ → βt. If a fixed cut is set (dots
in Fig. 6), one recovers the familiar connection between
energy cumulants and derivatives of the free energy, and
φ is convex. Our choice of cutting at Em looks physically
sensible. On a finite lattice, it leads to a situation similar
to that of Van der Waals theory. In the thermodynamical
limit, it defines a disordered microcanonical entropy den-
sity S(d)(E), defined and concave for E(d) ≤ E ≤ 0. A sim-
ilar construction of its ordered counterpart S(o)(E) is im-
mediate through duality for −2 ≤ E ≤ E(o). The entropy
S(E) for the whole system is finally achieved as usual by
supplementing S(o)(E) and S(d)(E) by their common tan-
gent straight line between E(o) and E(d). In this way, our
approach provides a model entropy S(E) for any E.

6 Summary and conclusions

We have applied a Fisher’s version of the droplet picture to
the 2D q-states Potts model in the vicinity of the temper-
ature driven transition, which is first order above qc = 4.
The droplet parameters were constrained by requiring
that critical properties of the free energy are recovered
as q → qc, complying with Fisher’s scaling ideas and pre-
vious empirical observations based on large q expansions
of the energy cumulants [19–21]. Using duality of the Potts
model, we focussed on the disordered phase properties and
showed that, at the price of a unique q-independent free
scale, the energy cumulants of order ≤ 10 measured in
a numerical simulation by Janke and Kappler were accu-
rately reproduced (Fig. 1). The analytical structure of the
thermodynamical free energy in the inverse temperature
β plane was then analyzed, and a branch point essential

singularity at the transition fully characterized. Next we
investigated the consequences of these properties directly
on the energy distribution currently generated in numeri-
cal simulations on finite lattices. In particular, evaluating
this distribution analytically far away from its peak, we
established a direct link between its size dependence there
and the free energy discontinuity around the branch cut.
Finite size effects are also present close to the peak of
the distribution and in good agreement with the result of
a numerical simulation which we performed at q = 9 for
comparison. We finally discussed static aspects of metasta-
bility. We defined a free energy beyond the transition point
βt via the reweighting of the energy distribution at finite
size, showing that, again due to the essential singularity,
this can be done up to a size dependent spinodal point
only, which moreover coincides with βt in the thermody-
namical limit.

We noted earlier that various versions of the generic
droplet picture have been used to study the first order
transition of the Ising model below its critical tempera-
ture, and the associated issues of singularity of the free
energy, metastability, and nucleation rates. As already
mentioned in Section 2.3, the Fisher’s version which we
apply as been questionned for the Ising case in that it as-
signs a droplet an interfacial energy which grows faster
than the perimeter (σ > 1/2 in (14)), which sounds
odd at least for large droplets. Binder has shown [5,9]
how scaling prescriptions valid close to the critical point
(T = Tc, h = 0 for Ising) can reconcile the Fisher’s de-
scription and the original geometric picture of nucleation.
We expect that similar arguments apply to the Potts case
around q = qc, β = βt. In any case, our work shows that
following the Fisher’s point of view provides an extremely
efficient and economical parametrization of the pure phase
free energies, as particularly illustrated by its adequacy
to describe the ten first energy cumulants: a) their mea-
surements in numerical simulations [17] require the pre-
dicted, non-geometrical, values σ = 2/3 and τ = 7/3 (see
Eqs. (31, 32)), b) the pseudo interfacial tension ω scales as
prescribed by the Widom exponent for the conventional
tension.

We see three directions in which it would be inter-
esting to pursue with the Potts model, noting that the
above indices differ from their geometrical values more
than they do for the Ising case. i) Derivation of exact re-
sults, in analogy with what has been done for Ising or
Ising-like models on cluster distributions, large order cu-
mulants, metastable states. ii) Dynamics at and near the
transition and relationship between nucleation rates and
singularities of the free energies. iii) Relationship between
finite size properties of energy distributions at the transi-
tion and the discontinuity of the pure phase free energy.
The existence of such a connection is demonstrated by our
derivation of equation (56) (which can be easily extended
to arbitrary values of the indices σ and τ). Accordingly,
high statistics numerical data [17,18] may provide a direct
access to the free energy discontinuities, without requiring
heavy dynamical investigations.
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Workshop, edited by H.J. Herrmann, W. Janke, F. Karsch
(World Scientific, Singapore, 1992).

12. D.B. Abraham, P.J. Upton, Int. J. Mod. Phys. C 3, 1071
(1992).

13. P.A. Rikvold, B.M. Gorman, Annual Review of Compu-
tational Physics, edited by D. Stauffer (World Scientific,
Singapore, 1994), Vol. 1.

14. C.C.A. Guenther, P.A. Rikvold, M.A. Novotny, Physica A
212, 194 (1994).

15. Recent studies of nucleation include: V. Cataudella, G.
Franzese, M. Nicodemi, A. Scala, C. Coniglio, Phys. Rev.
E 54, 175 (1996); M. Acharyya, D. Stauffer, Eur. Phys. J.
B 5, 571 (1998); C.S. Schioppa, F. Sciortino, P. Tartaglia,
Phys. Rev. E 57, 3797 (1998); L. Bocquet, F. Restagno, T.
Biben, cond-mat/9901180. For a field theoretic approach:
J. Alexandre, V. Branchina, J. Polonyi, Phys. Lett. B
445, 351 (1998); A. Strumia, N. Tetradis, C. Wetterich,
hep-ph/9808263.

16. R.B. Potts, Proc. Cambr. Phil. Soc. 48, 106 (1952).
17. W. Janke, S. Kappler, J. Phys. I France 7, 663 (1997).
18. A. Billoire, T. Neuhaus, B.A. Berg, Nucl. Phys. 413, 795

(1994). This paper contains references to earlier attempts
at interface tension determinations.

19. T. Bhattacharya, R. Lacaze, A. Morel, Europhys. Lett. 23,
547 (1993); Nucl. Phys. B (Proc. Suppl.) 34, 671 (1994).

20. T. Bhattacharya, R. Lacaze, A. Morel, J. Phys. I France
7, 81 (1997).

21. T. Bhattacharya, R. Lacaze, A. Morel, Nucl. Phys. B 435,
526 (1995).

22. J. Cardy, Renormalisation Group Theory of Branching
Potts Interfaces, cond-mat/9806098.

23. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
24. R.J. Baxter, J. Phys. C 6, L-445 (1973); J. Stat. Phys. 9,

145 (1973).
25. B.J. Hiley, M.F. Sykes, J. Chem. Phys. 34, 1531 (1961).
26. J.W. Essam, M.E. Fisher, J. Chem. Phys. 38, 802 (1963);

M.E. Fisher, M.F. Sykes, Phys. Rev. 114, 45 (1974); N.J.
Guenther, D.A. Nicole, D.J. Wallace, J. Phys. A 13, 1755
(1980).

27. P.W. Kasteleyn, C.M. Fortuin, J. Phys. Soc. Jap. 26
(Suppl.), 11 (1969).

28. H. Arisue, K. Kabata, The large q expansion of the energy
cumulants for the two-dimensional q-state Potts model,
hep-lat/9810029.
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76, 247 (1989); A. Klümper, Int. J. Mod. Phys. B 4, 871
(1990); E. Buffenoir, S. Wallon, J. Phys. A 26, 3045 (1993).

30. C. Borgs, W. Janke, J. Phys. I France 2, 2011 (1992); W.
Janke, S. Kappler, Nucl. Phys. B (Proc. Suppl.) 42, 770
(1995); Europhys. Lett. 31, 345 (1995).

31. B. Widom, J. Chem. Phys. 43, 3892 (1965).
32. The function φ′′ can also be calculated as a Meijer’s func-

tion (H. Navelet, private communication). Similar func-
tions are studied in [33].

33. H.A. Kastrup, cond-mat/9803269.
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